

March 17, 2016 ES-4316

Earth Solutions NW LLC

- Geotechnical Engineering
- Construction Monitoring
- Environmental Sciences

Ms. Jennifer Brenes 2675 – 74th Avenue Southeast Mercer Island, Washington 98040

Subject:

Geotechnical Consulting Services

Proposed Single-Family Residential Improvements

2675 – 74th Avenue Southeast Mercer Island, Washington

Reference:

Kathy G. Troost and Aaron P. Wisher

Geologic Map of Mercer Island, October 2006

King County Flood Control District

Liquefaction Susceptibility for King County, May 2010

C & C Surveying

Topographic Survey, dated October 2, 2013

United States Department of Agriculture Natural Resources Conservation Service Online Web Soil Survey (WSS) resource

Dear Ms. Brenes:

Earth Solutions NW, LLC (ESNW) has prepared this letter summarizing our geotechnical consulting services performed on the subject site. This letter was prepared in general accordance with the scope of services outlined in our proposal dated January 20, 2016 and authorized by you on the same date. A summary of our subsurface exploration and geotechnical recommendations pertinent to the proposed activities are provided in this letter.

Project Description

We understand you wish to complete several improvements to your existing residence and associated property space. ESNW was retained at your request to provide geotechnical consulting services, in an effort to better characterize the subsurface conditions underlying your property in support of the proposed improvements. As we understand, such improvements include, but may not limited to, the following:

- Teardown of the existing timber crib retaining wall (located to the west of the residence) and construction of a new retaining wall;
- Construction of a new garage to replace the existing garage-carport structure;
- Expansion of the southwestern wing of the residence, and;
- Possible construction of a deck to wrap around the northern portion of the residence.

Where the existing residence is expanded, we anticipate the construction will be consistent with the existing number of stories. As such, perimeter footing loads were assumed to be on the order of 1 to 2 kips per lineal foot (klf). Slab-on-grade loading was estimated to be approximately 150 pounds per square foot (psf).

If the design assumptions outlined in this section are incorrect or change, or if construction conditions differ from those encountered during our fieldwork, ESNW should be contacted to review the recommendations and conclusions provided in this letter, which has been prepared for the exclusive use of Ms. Jennifer Brenes and her representatives. No warranty, expressed or implied, is made. This letter was prepared in a manner consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area.

Site Conditions

The subject site is located west of the intersection between Southeast 27th Street and 74th Avenue Southeast in Mercer Island, Washington. The approximate location of the property is depicted on Plate 1 (Vicinity Map). The subject property is comprised of one tax parcel (King County Parcel No. 531510-0392) totaling approximately 0.22 acres. The site is surrounded to the north, west, and south by single-family residences and to the east by 74th Avenue Southeast.

Surface

The site is occupied primarily by a single-family residence, detached garage, and related infrastructure improvements. Site topography descends from the southwest to the northeast, and we estimate total site elevation change is on the order of 45 to 50 feet. The central portion of the site, where existing improvements are located, is comparatively flat to the remainder of the property. Existing vegetation is comprised mostly of grass, landscaping features, and scattered trees.

Subsurface

An ESNW representative observed, logged, and sampled four soil borings, advanced within accessible areas of the property, on February 2 and 3, 2016 using a limited-access drill rig and operators retained by our firm. The borings were completed for purposes of assessing soil conditions, classifying site soils, and characterizing subsurface groundwater conditions within accessible areas of the property. The approximate locations of the borings are depicted on Plate 2 (Boring Location Plan). Please refer to the boring logs provided in Appendix A for a more detailed description of subsurface conditions. Select soil samples collected at the boring locations were analyzed in accordance with both Unified Soil Classification System (USCS) and United States Department of Agriculture (USDA) methods and procedures, where applicable.

Topsoil was encountered within the upper 6 to 12 inches of existing grades at the boring locations. The topsoil was characterized by brown to dark brown color, the presence of fine organic material, and small root intrusions. Fill was not explicitly encountered at the boring locations during our fieldwork, but may be present near areas of existing structural improvements. As necessary, ESNW can evaluated fills encountered during future site activities upon request.

Native soils encountered at the boring locations were classified as either mass wastage deposits or Lawton Clay. The mass wastage deposits were encountered generally within the upper 10 to 15 feet of existing grades and were characterized primarily as very loose to medium dense, clayey sand (USCS: SC) with and/or without significant gravel content. Underlying the mass wastage deposits, very stiff to hard Lawton Clay was encountered. Sandy interbeds were encountered within the native clays at various depths. Native soils were encountered generally in a moist condition, extending to the maximum exploration depth of 31.5 feet below the existing ground surface (bgs).

Geologic Setting

The referenced geologic map resource identifies Lawton Clay (Qvlc) as the primary geologic feature of the site subsurface. Vashon advance outwash (Qva) is mapped across the topographically higher portion of First Hill, and nonglacial deposits of pre-Fraser glaciation age (Qpfn) are mapped immediately east of the site. The site is mapped within a "mass wastage deposits" (Qmw) overprint.

According to the geologic map resource, Lawton Clay is typically "laminated to massive silt, clayey silt, and silty clay." Vashon advance outwash is typically a well-sorted sand and gravel deposit which was formed by streams issuing from the advancing ice sheet. Nonglacial deposits of pre-Fraser glaciation age may contain "sand, gravel, silt, clay, and organic deposits of inferred nonglacial origin." Mass wastage deposits are comprised primarily of "colluvium, soil, landslide debris, and organic matter with indistinct morphology." Such deposits are "common on steep slopes, most notably around the south end of the island, along the east-central side of the island, and around First Hill." The referenced WSS resource suggests Kitsap silt loam (Map Unit Symbol: KpB and KpD) underlies the site and surrounding areas. The Kitsap series was formed in terraces. Based on our field observations, native soils underlying subject site are consistent with the geologic setting outlined in this section. Soils most likely to be encountered during subsequent construction activities will be comprised primarily of mass wastage deposits (clayey sand).

Groundwater

During our subsurface exploration completed on February 2 and 3, 2016, groundwater seepage was encountered at depths of approximately 7 to 15 feet bgs at the boring locations. Based on our field observations, groundwater seepage may be encountered within site excavations depending on the time of year construction takes place. Seepage rates and elevations fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the wetter, winter months.

Site Development Recommendations

Based on the results of our investigation, construction of the proposed improvements is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed construction include foundation support and/or slab-on-grade subgrade support and the suitability of using on-site soils as structural fill (where necessary). Maintenance of slope stability through sound construction and grading techniques is also an important geotechnical consideration.

Earthwork

From a geotechnical standpoint, our field observations indicate on-site soils likely to be encountered during construction will be fine grained and generally unsuitable for use as structural fill.

Where necessary, imported soil intended for use as structural fill should consist of a well-graded granular soil with a moisture content that is at or slightly above the optimum level. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Foundation and slab subgrade surfaces should be compacted in situ to a minimum depth of one foot below the design subgrade elevation. Uniform compaction of the foundation and slab subgrade areas will establish a relatively consistent subgrade condition below the foundation and slab elements. ESNW should observe the compacted subgrade prior to placing formwork. Supplementary recommendations for subgrade improvement may be provided at the time of construction and would likely include further mechanical compaction or overexcavation and replacement with suitable structural fill.

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, and roadway areas. Fills placed to construct permanent slopes and throughout retaining wall and utility trench backfill areas are also considered structural fill. Soils placed in structural areas should be placed in loose lifts of 12 inches or less and compacted to a relative compaction of 90 percent, based on the laboratory maximum dry density as determined by the Modified Proctor Method (ASTM D1557). The upper one foot of structural fill placed in pavement and sidewalk subgrade areas should be compacted to 95 percent. More stringent compaction specifications may be required for utility trench backfill zones depending on the responsible utility district or jurisdiction.

Slope Stability

We evaluated slope stability across the subject property with specific focus on the northern portion of the property where grades are steepest. Slope stability analyses were completed for the existing site configuration. One representative cross-section was completed where the slope stability analyses were performed. The existing topography, as shown on the referenced survey, was utilized in preparation of Plate 3 (Cross Section A-A').

Global stability analyses were completed using the 2007 GeoStudio Slope/W (Version 7.23) software modeling program. Slip surface entry and exit ranges were established near the top and toe of the slope, respectively, and the modeling program searched for the critical slip surface. Selected modeling parameters for site soils were primarily based on our experience with similar projects in similar soil settings. Laboratory test results, as well as Standard Penetration Test (SPT) data collected during the fieldwork, were also considered. The following table summarizes the soil modeling parameters utilized during our slope stability analyses:

Soil Type	USCS Classification	Unit Weight (pcf)	Cohesion (psf)	Coefficient of Friction (degrees)
Mass-wastage Deposits	SC	120	100	28
Lawton Clay	СН	115	500	26

The results of our analyses, as well as additional modeling parameters, are attached to this letter. The factor-of-safety (FOS) values indicated on the attached Slope/W computer output are representative of the critical slip surfaces. Both seismic and static conditions were modeled for the existing configuration. In accordance with the 2012 International Building Code and utilizing 2008 United States Geologic Survey (USGS) hazard data, a peak horizontal ground acceleration (PGA) value of 0.418 g was used for site-specific modeling. The pseudostatic coefficient used in the stability analyses was equivalent to one-half of the PGA, or 0.209 g. Analyses yielded minimum FOS values greater than 1.2 for seismic conditions and 1.5 for static conditions with respect to the existing configuration.

Foundations

Where applicable, the proposed structural additions may be supported on a conventional continuous and spread footing foundation bearing on competent native soils, recompacted native soils (where feasible), or new structural fill. In general, competent native soils, suitable for support of foundations, will likely be encountered within the upper three to five feet of existing grades. Where loose or unsuitable soil conditions are exposed at foundation subgrade elevations, compaction of soils to the specifications of structural fill, or overexcavation and replacement with a suitable structural fill material, will be necessary.

Provided the structural foundation(s) will be supported as described above, the following parameters may be used for design:

Allowable soil bearing capacity
 2,500 psf

• Passive earth pressure 225 pcf (equivalent fluid)

Coefficient of friction
 0.35

A one-third increase in the allowable soil bearing capacity may be assumed for short-term wind and seismic loading conditions. The above passive pressure and friction values include a factor-of-safety of at least 1.5. With structural loading as expected, total settlement in the range of one inch and differential settlement of about one-half inch is anticipated. The majority of settlement should occur during construction as dead loads are applied.

Seismic Design

The 2012 International Building Code recognizes the American Society of Civil Engineers (ASCE) for seismic site class definitions. In accordance with Table 20.3-1 of the ASCE Minimum Design Loads for Buildings and Other Structures manual, Site Class D should be used for design.

The referenced liquefaction susceptibility map indicates the site and surrounding areas maintain very low liquefaction susceptibility. Liquefaction is a phenomenon where saturated or loose soils suddenly lose internal strength and behave as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or other intense ground shaking. In our opinion, site susceptibility to liquefaction may be characterized as low. Relatively consistent soil densities at depth and the absence of a uniformly established, shallow groundwater table were the primary bases for this characterization.

Slab-on-Grade Floors

Where necessary, new slab-on-grade floors should be supported on a firm and unyielding subgrade. Where feasible, native soils exposed at the slab-on-grade subgrade level can likely be compacted in situ to the specifications of structural fill. Unstable or yielding areas of the subgrade should be recompacted, or overexcavated and replaced with suitable structural fill, prior to construction of the slab.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less (percent passing the Number 200 sieve, based on the minus three-quarter inch fraction). Installation of a vapor barrier below the slab should be considered in areas where slab moisture is undesirable. If utilized, the vapor barrier should be a material specifically designed for use as a vapor barrier and should be installed in accordance with the specifications of the manufacturer.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for design:

	Active earth pressur	e (yielding condition)	45 pcf (equivalent fluid)
--	----------------------	------------------------	---------------------------

•	At-rest ear	th pressure	(restrained	condition)	65 pcf

Passive earth pressure
 225 pcf (equivalent fluid)

• Coefficient of friction 0.35

Seismic surcharge 8H*

The above design parameters are based on a level backfill condition and level grade at the wall toe. Revised design values will be necessary if sloping grades are to be used above or below retaining walls. Additional surcharge loading from adjacent foundations, sloped backfill, or other relevant loads should be included in the retaining wall design.

^{*} Where H equals the retained height (in feet)

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired. A perforated drain pipe should be placed along the base of the wall and connected to an approved discharge location. If drainage is not provided, hydrostatic pressures should be included in the wall design.

Drainage

Based on our field observations, significant perched groundwater seepage flows are not likely to interfere with construction activities; nonetheless, discrete zones of perched seepage may be encountered within site excavations depending on the time of year construction takes place. ESNW should be consulted during preliminary grading to identify areas of seepage and provide supplementary recommendations, where necessary. Finish grades must be designed to direct surface drain water away from the proposed structure, and water must not be allowed to pond adjacent to the structure. In our opinion, foundation drains should be installed along the perimeter footings of new structural improvements (where applicable).

Excavations and Slope Layback

The Federal Occupation Safety and Health Administration (OSHA) and the Washington Industrial Safety and Health Act (WISHA) provide soil classification in terms of temporary slope inclinations. Soils that exhibit a high compressive strength are allowed steeper temporary slope inclinations than are soils that exhibit a lower compressive strength. Based on the conditions encountered at the boring locations, soil likely to be encountered during construction, as well as any area where groundwater seepage is exposed, is classified as Type C by OSHA and WISHA. Temporary slopes over four feet in height in Type C soils must be sloped no steeper than one-and-one-half horizontal to one vertical (1.5H:1V).

Where encountered, the presence of perched groundwater may cause caving of the temporary slopes due to hydrostatic pressure. ESNW should observe site excavations to confirm soil types and allowable slope inclinations. If the recommended temporary slope inclinations cannot be achieved, temporary shoring may be necessary to support excavations. In any event, due to relative proximity to property lines and/or existing structures, temporary shoring may become necessary depending on the extent of excavations. ESNW can provide supplementary recommendations to aid with temporary shoring design upon request. Temporary shoring for this project would likely include ecology block wall installation or construction of a relatively "limited" soldier pile wall.

Existing Timber Crib Retaining Wall

We understand you desire to replace the existing timber crib retaining wall, located to the west of the residence, with a new retaining wall. We observed the existing wall during our January 14, 2016 site reconnaissance. Based on our field observations, the existing wall is approximately 10 to 12 feet in height and appears to be in a generally fair condition. Timber rot was noted at various locations along the wall. Relatively light groundwater seepage was observed through the face of the wall at a few locations.

In our opinion, a modular block retaining wall would likely be feasible for replacement of the existing timber crib wall. Depending on both the required wall height and the soil conditions in proximity to the wall location, mechanically stabilized earth (MSE) considerations may need to be incorporated into the design. A two-tiered configuration may also be feasible depending on final dimensioning and the available space for reconstruction. ESNW can provide additional consulting services, including a retaining wall design and supporting calculations, upon request. In any event, the retaining wall should be supported on a firm and unyielding subgrade. Adequate drainage should be installed immediately behind the wall face(s) and directed to an appropriate discharge location. ESNW should be retained to observe wall demolition and/or reconstruction activities so as to confirm the stability of the cut and provide supplementary geotechnical recommendations, where necessary.

Additional Services

ESNW should be consulted to review final site designs and/or project plans to ensure appropriate geotechnical provisions have been incorporated. ESNW should also be retained to provide testing and consultation services during construction.

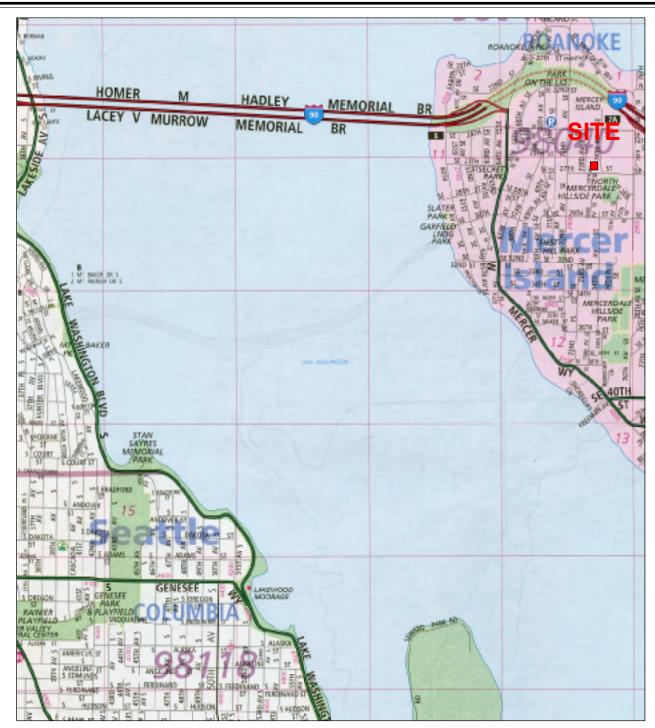
We appreciate the opportunity to be of service and trust this letter meets your current needs. Should you have questions regarding the content herein, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Keven D. Hoffmann, E.I.T. Project Engineer

Attachments: Plate 1 – Vicinity Map


Plate 2 – Boring Location Plan Plate 3 – Cross Section A-A'

Boring Logs

Laboratory Sieve Analyses Slope/W Computer Output

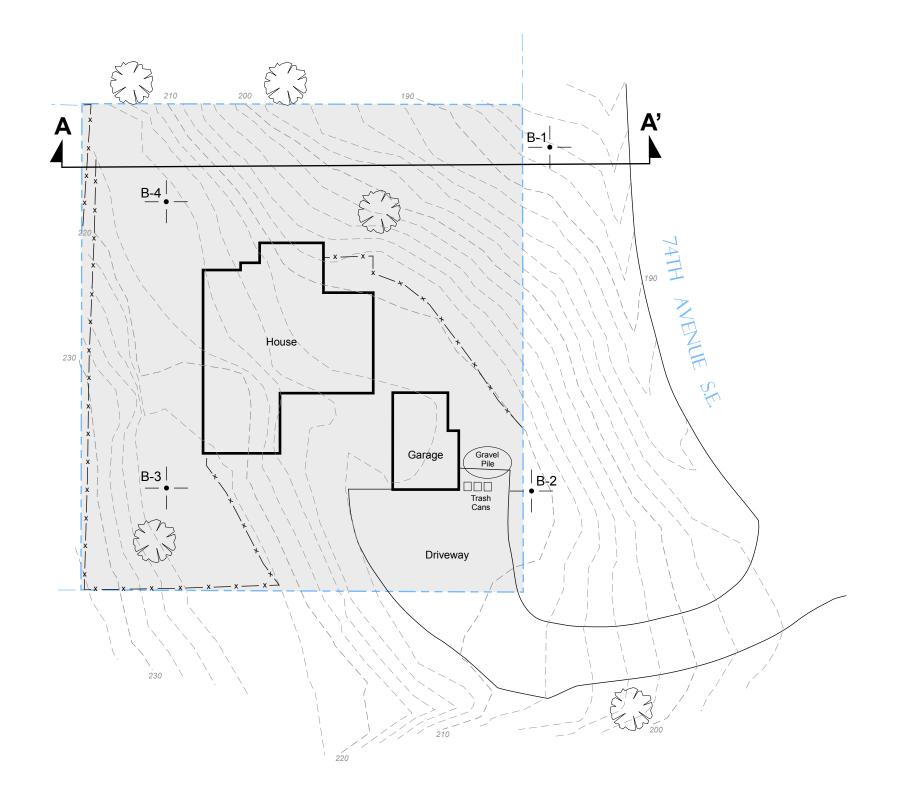
OND A COCK 3/2/COCK WAS MASS ON AL

Raymond A. Coglas, P.E. Principal

Reference: King County, Washington Map 595 By The Thomas Guide Rand McNally 32nd Edition

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Vicinity Map Brenes Property Mercer Island, Washington


Drwn. MRS	Date 03/15/2016	Proj. No.	4316
Checked KDH	Date Mar. 2016	Plate	1

Checked By KDH

Date 03/15/2016

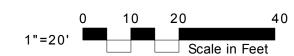
Proj. No. 4316

Plate 2

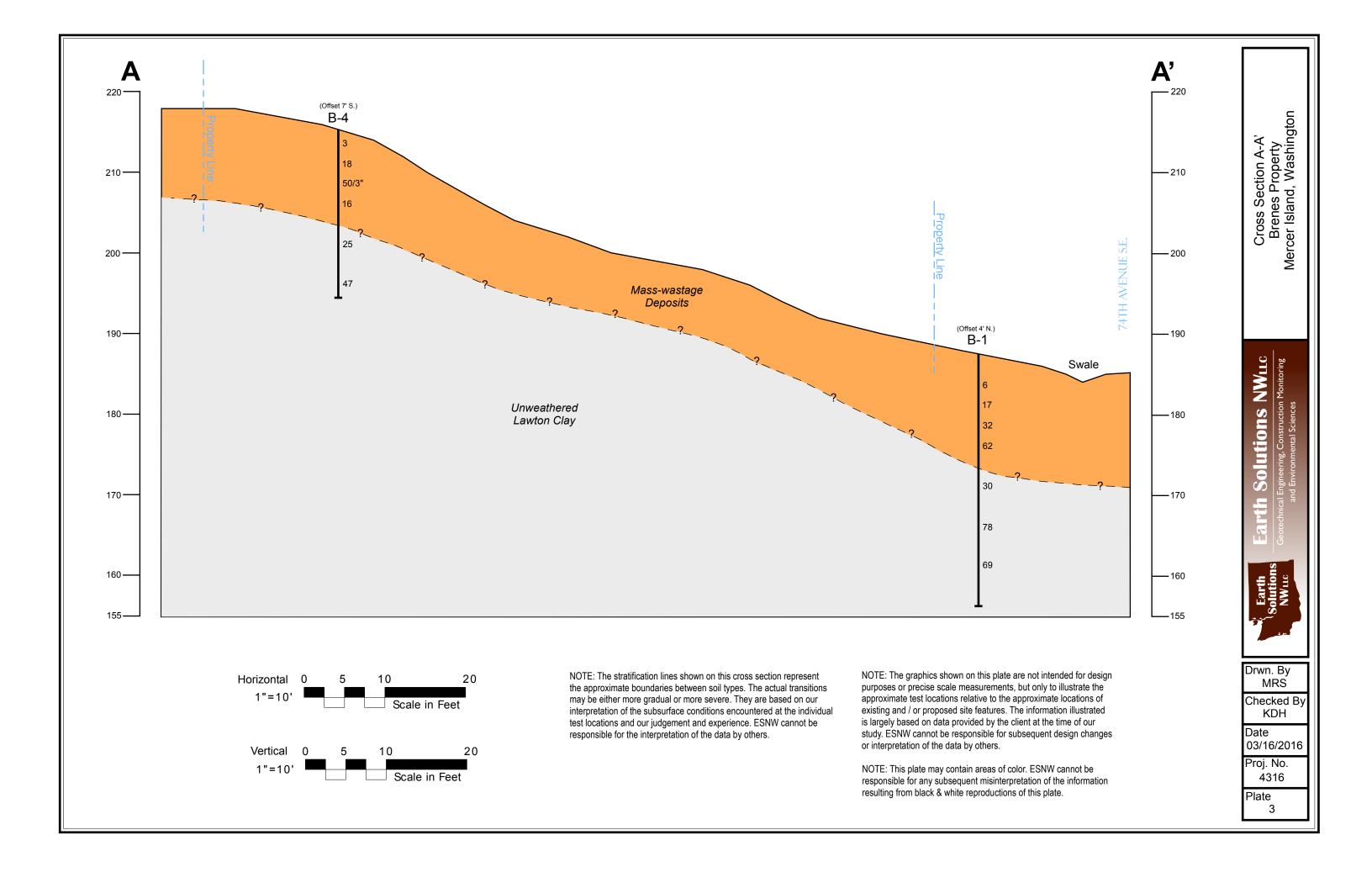
LEGEND

Approximate Location of ESNW Boring, Proj. No. ES-4316, Feb. 2016

Subject Site


Existing Building

Existing Tree


Cross Section Line (See Plate 3)

NOTE: The graphics shown on this plate are not intended for design purposes or precise scale measurements, but only to illustrate the approximate test locations relative to the approximate locations of existing and / or proposed site features. The information illustrated is largely based on data provided by the client at the time of our study. ESNW cannot be responsible for subsequent design changes or interpretation of the data by others.

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Earth Solutions NWLLC SOIL CLASSIFICATION CHART

	. 100 0000	0110	SYME	BOLS	TYPICAL
M	AJOR DIVISI	ONS	GRAPH	LETTER	DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES
	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES
MORE THAN 50% OF MATERIAL IS	SAND AND	CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
LARGER THAN NO. 200 SIEVE SIZE	SANDY SOILS	(LITTLE OR NO FINES)	\times	SP	POORLY-GRADED SANDS, GRAVELLY SAND, LITTLE OR NO FINES
	MORE THAN 50% OF COARSE FRACTION	SANDS WITH FINES		SM	SILTY SANDS, SAND - SILT MIXTURES
1	PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES
				ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
FINE GRAINED SOILS	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS SMALLER THAN NO. 20075				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SIZE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY
				ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
HI	GHLY ORGANIC :	SOILS	77 77 77 77 77 7 77 77 77 77 77 77 77 77	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

DUAL SYMBOLS are used to indicate borderline soil classifications.

The discussion in the text of this report is necessary for a proper understanding of the nature of the material presented in the attached logs.

Earth Solutions NWac

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-1

PAGE 1 OF 2

CLIEN	NT Ms.	Jennife	r Brenes				PROJECT NAME Brenes Property						
PROJ	ECT NU	MBER	4316				PROJECT LOCATION Mercer Island Washington						
DATE	STARTE	D 2/2	2/16	COMPLETED									
DRILL	ING COI	NTRAC	TOR Bore	tec1, Inc.			GROUND WATER LEVELS:						
DRILL	ING MET	THOD	HSA				AT TIME OF DRILLING						
LOGG	SED BY	KDH		CHECKED BY	KDH								
NOTE	S Surfa	ice Co	nditions: du	f			AFTER DRILLING						
-		Г	r		T			_					
O DEPTH (ft)	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS AND REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION						
					TPSL	1/ 1/	Dark brown TOPSOIL	185.0					
					-	1111	Tan fat CLAY, stiff, moist	100.0					
					1								
							-trace sand interbeds						
	M		2-3-5	MC = 38.80%									
	ss	72	(8)	N _{e0} =6									
	/_N				СН		-becomes very stiff						
5		i			ŀ								
	\/		45 40 40	MO - 42 200/			-minimal recovery						
	X ss	6	15-10-12 (22)	MC = 42.20% $N_{60}=17$									
	/ V						-water added to borehole at 6'						
	-												
	\				1		7.5 Gray clayey SAND with gravel, dense, moist	178.5					
- 1	ss	67	19-21-21 (42)	MC = 18.40% $N_{60}=32$									
	$/ \setminus$		(42)	1460-32									
10	X /				-		haceman year dance						
		78	19-33-	MC = 10.30%	sc		-becomes very dense						
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/6	50/6"	N _{e0} =62	30								
	VN												
E 195													
L 72													
2					1								
- -					-	III	14.0 Gray fay CLAY, hard, moist	172.0					
15							Gray ray OBAT, mard, moist						
3 15	1			MC = 32.00%			-groundwater seepage at 15'						
5		100	13-16-19 (35)	LL = 57 PL = 24									
	/\		(00)	Fines = 98.40%									
				N ₆₀ =30	СН								
4													
15	-												
ā													
20	ĺ				1								

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704

Fax: 425-449-4711

BORING NUMBER B-1

PAGE 2 OF 2

PROJECT NAME Brenes Property **CLIENT** Ms. Jennifer Brenes PROJECT LOCATION Mercer Island, Washington **PROJECT NUMBER** 4316 SAMPLE TYPE NUMBER BLOW COUNTS (N VALUE) GRAPHIC LOG RECOVERY USCS DEPTH (ft) **TESTS** MATERIAL DESCRIPTION AND **REMARKS** 20 Gray fay CLAY, hard, moist (continued) 18-32-MC = 44.50% SS 100 50/6" N₆₀=78 25 -becomes sandy fat clay MC = 26.00% 21-32-41 SS 100 (73)N₆₀=69 30 24-38-SS 100 MC = 25.10%50/5" 154.6 Boring terminated at 31.4 feet below existing grade. Groundwater seepage encountered at 15.0 feet during drilling. Boring backfilled with bentonite. Bottom of hole at 31.4 feet. GENERAL BH / TP / WELL 4316 GPJ GINT US GDT 3/17/16

Earth Solutions NWn.c

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-2 PAGE 1 OF 2

CLIEN	IT Ms.	lennife	r Brenes				PF	OJECT NAME Brenes Property					
1	LIENT Ms. Jennifer Brenes ROJECT NUMBER 4316							PROJECT LOCATION Mercer Island, Washington					
								GROUND ELEVATION 210 ft HOLE SIZE					
								ROUND WATER LEVELS:					
	ING MET							AT TIME OF DRILLING					
1				CHECKED BY	KDH		-						
	7.7		nditions: gra					AFTER DRILLING					
NOTE		Ce Co	iditions. gra	133	T	П		AI IEI DILLEINO	_				
O DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS AND REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION					
10					TPSL	711/1	.5 Da	rk brown TOPSOIL	209.				
						11//		own clayey SAND, very loose, moist					
	ss	17	2-3-2 (5)	MC = 24.60% N ₆₀ =4			-irc	on oxide staining					
5	ss	28	2-2-2 (4)	MC = 24.80% LL = 36 PL = 23 Fines = 44.00% N ₆₀ =3									
- *							-be	ecomes wet					
	//						-gr	oundwater seepage at 7'					
	ss	78	2-2-3 (5)	MC = 15.50% N ₆₀ =4			-in	creased sand content					
10	1				sc		-be	ecomes medium dense, moist to wet					
	ss	22	4-5-9	MC = 14.40%	30		-						
-	\mathbb{N}		(14)	N ₆₀ =11			-sc	attered gravel					
					1		-ha	ard drilling from 11' to 14'					
15							-be	ecomes clayey fine sand, medium dense, moist to wet					
15	1												
5 	ss	83	10-13-17 (30)	MC = 24.20% N ₆₀ =26									
VELL 43 10	1												
20							20.0		190.				

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005

BORING NUMBER B-2

PAGE 2 OF 2

Telephone: 425-449-4704 Fax: 425-449-4711

PROJECT NAME Brenes Property

CLIENT Ms. Jennifer Brenes PROJECT NUMBER 4316 PROJECT LOCATION Mercer Island, Washington SAMPLE TYPE NUMBER GRAPHIC LOG BLOW COUNTS (N VALUE) RECOVERY U.S.C.S. DEPTH (ft) **TESTS** MATERIAL DESCRIPTION AND **REMARKS** 20 Brown clayey SAND, medium dense, moist 12-14-16 MC = 27.20%SS 83 N₆₀=29 (30)-clay interbeds -becomes dense SC 25 14-16-25 MC = 28.30%SS 83 (41) $N_{60} = 39$ 183.5 Boring terminated at 26.5 feet below existing grade. Groundwater encountered at 7.0 feet during drilling. Boring backfilled with bentonite chips. Bottom of hole at 26.5 feet. GENERAL BH / TP / WELL 4316,GPJ GINT US.GDT 3/17/16

Earth Solutions NWi.c

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-3 PAGE 1 OF 2

CLIE	NT M	s. Jenni	er Brenes				PROJECT NAME Brenes Property
PROJ	IECT I	IUMBER	4316				PROJECT LOCATION Mercer Island, Washington
1			/3/16	COMPLETED			
1				etec1, Inc.			
			HSA	CHECKED BY	/ KDF	J	AT TIME OF DRILLING
			onditions: gra		KDI		AFTER DRILLING
HOTE	_		1	155	Т	ТТ	AI IERUMEUNO
O DEPTH	SAMPLE TYPE	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS AND REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
							Brown clayey SAND, very loose, moist
	\\\ s	S 22	1-1-3 (4)	MC = 19.40% N _{so} =3			
5	/ \ 		(+)	1480 0			-trace sand interbeds
8 3		S 67	8-10-11 (21)	MC = 21.40% Fines = 25.90% N ₆₀ =16	sc		-becomes medium dense [USDA Classification: loamy fine SAND]
-					30		-becomes very dense
	S	S 83	34-40-45 (85)	MC = 19.00% N ₆₀ =64			-light groundwater seepage at 7.5' -trace gravel lens
10							-increased poorly graded sand content
	S	S 89	24-34-37 (71)	MC = 24.20% N ₆₀ =53			-becomes wet
-						13	Gray fat CLAY, very stiff, moist
15	S	S 100	8-11-12 (23)	MC = 37.00% N ₆₀ =20			
-					СН		
15							
20						20.	0 20

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704

BORING NUMBER B-3

PAGE 2 OF 2

Fax: 425-449-4711 **CLIENT** Ms. Jennifer Brenes **PROJECT NAME** Brenes Property PROJECT NUMBER 4316 PROJECT LOCATION Mercer Island, Washington SAMPLE TYPE NUMBER RECOVERY % BLOW COUNTS (N VALUE) GRAPHIC LOG USCS DEPTH (ft) **TESTS** MATERIAL DESCRIPTION AND REMARKS 20 Gray fat CLAY, hard, moist MC = 27.00%12-17-21 SS 100 N₆₀=32 (38)25 MC = 28.90%18-25-29 100 SS (54) N₆₀=51 197.5 Boring terminated at 26.5 feet below existing grade. Groundwater seepage encountered at 7.5 feet during drilling. Bottom of hole at 26.5 feet. GENERAL BH / TP / WELL 4316.GPJ GINT US.GDT 3/17/16

Earth Solutions NWmc

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

BORING NUMBER B-4 PAGE 1 OF 2

CLIEN	NT Ms	Jennife					PROJECT NAME Brenes Property					
1	ECT NU						PROJECT LOCATION Mercer Island, Washington					
				COMPLETED	2/3/1	6						
DRILL	LING CO	NTRA	CTOR Bore	etec1, Inc.			GROUND WATER LEVELS:					
DRILL	LING ME	THOD	HSA				AT TIME OF DRILLING					
LOGG	SED BY	KDH		CHECKED BY	KDI	٠	AT END OF DRILLING					
NOTE	S Surf	ace Co	nditions: gra	iss			AFTER DRILLING					
o DEPTH	SAMPLE TYPE NUMBER	RECOVERY %	BLOW COUNTS (N VALUE)	TESTS AND REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION					
	ss	56	2-2-2 (4)	MC = 25.10% N ₆₀ =3			Brown clayey SAND, very loose, moist					
5	ss	67	4-13-11 (24)	MC = 17.30% N ₆₀ =18	sc		-becomes medium dense					
10	SS SS		7-12-9	MC = 24.10% MC = 28.70%			-water added to borehole at 9'					
	ss	67	(21)	N ₆₀ =16		12.5	Gray fat CLAY with sand, very stiff, moist					
GENERAL BH / TP / WELL 4316.GPJ GINT US.GDT 3/7/16 00 01 02	ss	100	12-12-17 (29)	MC = 54.90% LL = 90 PL = 29 Fines = 84.90% N ₆₉ =25	СН							
00 GENERAL BH / TP /		ļ	,			20.0) 196.					

(Continued Next Page)

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, Washington 98005 Telephone: 425-449-4704 Fax: 425-449-4711

PROJECT NAME Brenes Property

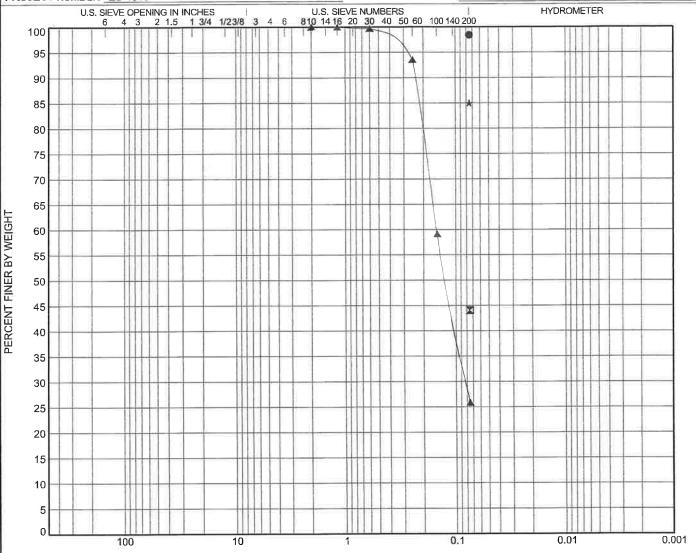
BORING NUMBER B-4 PAGE 2 OF 2

CLIENT Ms. Jennifer Brenes

PROJECT NUMBER	4316	PROJECT LOCATION Mercer Island, Washington
SAMPLE TYPE NUMBER RECOVERY %	BLOW COUNTS (N VALUE) SO ON REMARKS	
	17-21-28 MC = 48.20% CF N ₈₀ =47	
GENERAL BH / TP / WELL 4316.GPJ GINT US.GDT 3/7/16		Boring terminated at 21.5 feet below existing grade. No groundwater encountered during drilling. Bottom of hole at 21.5 feet.

Earth Solutions NW##

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005 Telephone: 425-284-3300

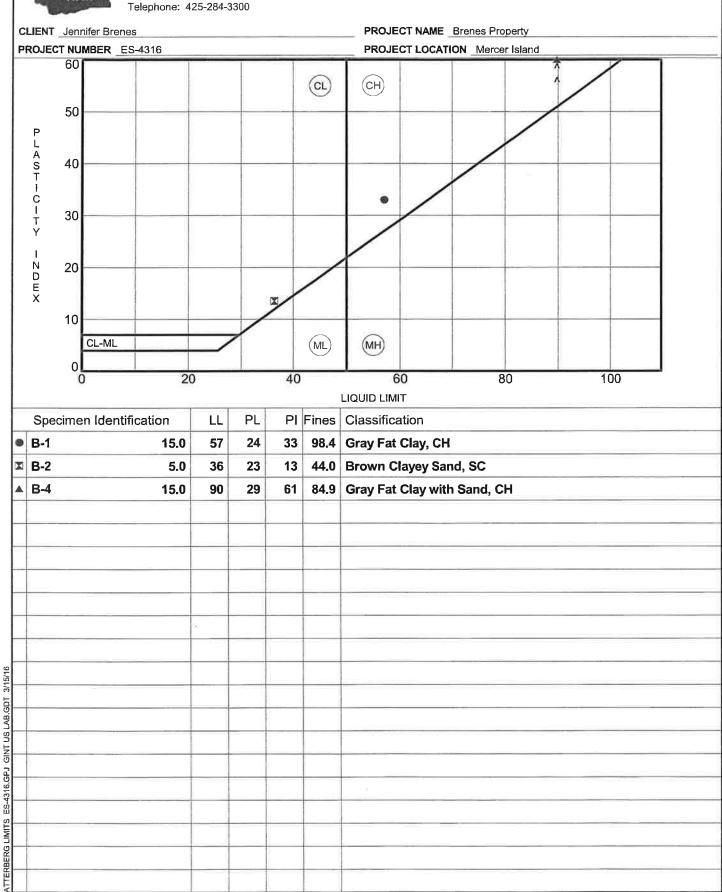

GRAIN SIZE DISTRIBUTION

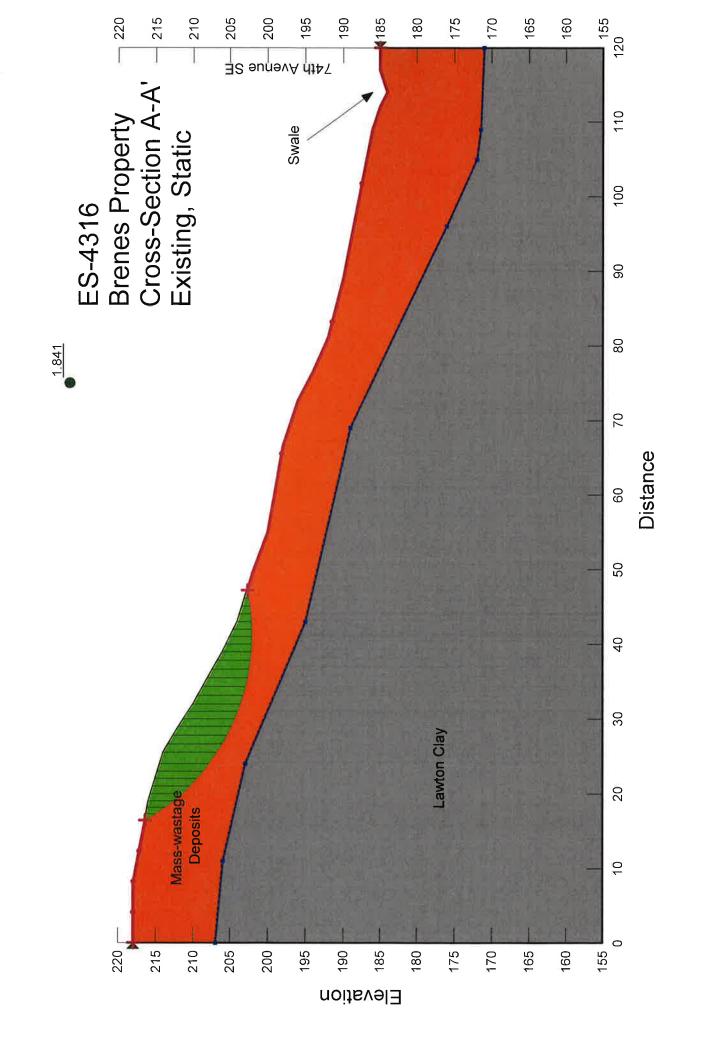
CLIENT Jennifer Brenes

PROJECT NAME Brenes Property

PROJECT LOCATION Mercer Island

GRAIN SIZE IN MILLIMETERS


COBBLES	GRA	VEL		SAND		SILT OR CLAY
CORREES	coarse	fine	coarse	medium	fine	SILT ON CLAT


S	pecimen	Identification			С	lassification	1				Сс	Cu		
•	B-1	15.00ft.		Gray Fat Clay, CH Brown Clayey Sand, SC USDA: Brown Loamy Fine Sand. USCS: SM.										
×	B-2	5.00ft.												
A	B-3	5.00ft.												
*	B-4	15.00ft.	Gray Fat Clay with Sand, CH											
S	pecimen	Identification	D100	D60	D30	D10	LL	PL	PI	%Silt	%	Clay		
•	B-1	15.0ft.	0.075				57	24	33	9	8.4			
×	B-2	5.0ft.	0.075				36	23	13	4	4.0			
*	B-3	5.0ft.	2	0.152	0.082					25.9				
+	B-4	15.0ft.	0.075				90	29	61	8	34.9			

Larth Solutions Mac

Earth Solutions NW 1805 - 136th Place N.E., Suite 201 Bellevue, WA 98005

ATTERBERG LIMITS' RESULTS

Existing, Static

Report generated using GeoStudio 2007, version 7.23. Copyright © 1991-2013 GEO-SLOPE International Ltd.

File Information

Title: Brenes Property Created By: Keven Hoffmann Revision Number: 119

Last Edited By: Keven Hoffmann

Date: 3/17/2016 Time: 9:47:25 AM

File Name: 4316.00 A-A.gsz

Directory: Y:\Keven's Inbox\Project Folders\4316\

Last Solved Date: 3/17/2016 Last Solved Time: 9:47:30 AM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

Existing, Static

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 0.1 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Mass-wastage Deposits

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 100 psf

Phi: 28 ° Phi-B: 0 °

Pore Water Pressure Piezometric Line: 1

Lawton Clay

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 500 psf

Phi: 26 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (0, 218) ft

Left-Zone Right Coordinate: (16.4092, 216.47105) ft

Left-Zone Increment: 4 Right Projection: Range

Right-Zone Left Coordinate: (47.21507, 202.70305) ft

Right-Zone Right Coordinate: (120, 185) ft

Right-Zone Increment: 4
Radius Increments: 4

Slip Surface Limits

Left Coordinate: (0, 218) ft Right Coordinate: (120, 185) ft

Piezometric Lines

Piezometric Line 1

Coordinates

Y (ft)
(10)

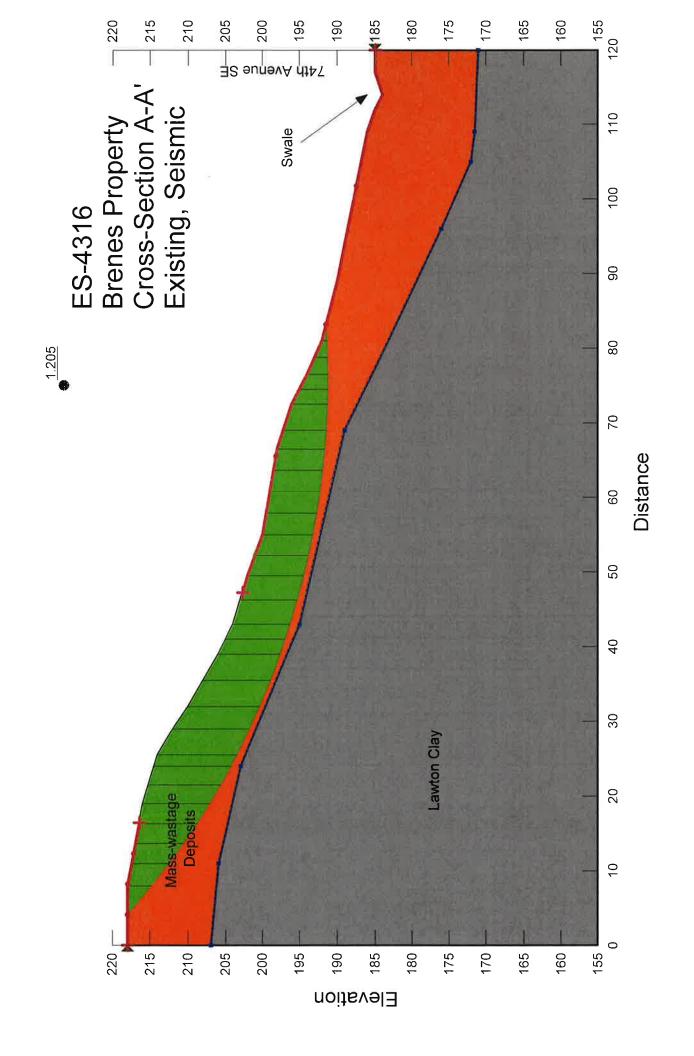
0	207
11	206
24	203
43	195
69	189
96	176
105	172
109	171.5
120	171

Regions

	Material	Points	Area (ft²)
Region 1	Lawton Clay	23,33,32,31,30,29,28,27,26,25,24	4167.25
Region 2	Mass- wastage Deposits	22,23,24,25,26,27,28,29,30,31,21,19,18,20,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1	1281.75

Points

	X (ft)	Y (ft)
Point 1	8	218
Point 2	19	216
Point 3	25.5	214
Point 4	29	212
Point 5	32	210
Point 6	35.5	208
Point 7	39	206
Point 8	43	204
Point 9	49.5	202
Point 10	55	200
Point 11	66.5	198
Point 12	72.5	196
Point 13	76.5	194
Point 14	81	192
Point 15	89	190
Point 16	99	188
Point 17	109	186
Point 18	114	184
Point 19	117	185
Point 20	112	185
Point 21	120	185
Point 22	0	218
Point 23	0	207
Point 24	11	206
Point 25	24	203
Point 26	43	195
Point 27	69	189
Point 28	96	176
Point 29	105	172


Point 30	109	171.5
Point 31	120	171
Point 32	120	155
Point 33	0	155

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)
1	103	1.841	(41.313, 230.846)	28.755	(16.4092, 216.471)	(47.2151, 202.703)

Slices of Slip Surface: 103

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	103	16.841	215.77015	-693.75529	-7.4598584	-3.9664771	100
2	103	17.7046	214.4475	-623.66729	94.977263	50.500307	100
3	103	18.5682	213.2671	-562.45158	183.43122	97.532107	100
4	103	19.5	212.12575	-504.64535	261.91881	139.2647	100
5	103	20.5	211.01825	-449.93761	332.21801	176.64345	100
6	103	21.5	210.01775	-401.9061	395.29111	210.18001	100
7	103	22.5	209.10935	-359.62427	453.15592	240.94728	100
8	103	23.5	208.2819	-322.39227	507.31161	269.74237	100
9	103	24.75	207.3583	-291.65922	570.59141	303.38884	100
10	103	26.083335	206.465	-270.95381	622.60057	331.04259	100
11	103	27.25	205.7734	-258.45094	648.88589	345.01875	100
12	103	28.416665	205.1534	-250.41405	672.03259	357.32607	100
13	103	29.5	204.63525	-246.54587	685.68433	364.58483	100
14	103	30.5	204.2069	-246.0887	689.22256	366.46613	100
15	103	31.5	203.82235	-248.37084	688.2365	365.94184	100
16	103	32.583335	203.4549	-253.90204	686.90751	365.2352	100
17	103	33.75	203.1099	-263.02776	683.43224	363.38737	100
18	103	34.916665	202.8177	-275.44931	670.48952	356.5056	100
19	103	36.083335	202.57665	-291.05814	646.55986	343.78198	100
20	103	37.25	202.38545	-309.77619	610.35421	324.53109	100
21	103	38.416665	202.2431	-331.55301	560.9513	298.26309	100
22	103	39.5	202.1524	-354.35307	507.70712	269.95267	100
23	103	40.5	202.1067	-377.76889	453.17873	240.9594	100
24	103	41.5	202.09585	-403.37153	389.62182	207.1656	100
25	103	42.5	202.11975	-431.13224	317.91882	169.04043	100
26	103	43.526885	202.1811	-455.68859	250.22093	133.04483	100
27	103	44.580655	202.28205	-477.1553	187.40572	99.645387	100
28	103	45.63442	202.4224	-501.08971	119.56351	63.573048	100
29	103	46.688185	202.6028	-527.51887	48.225849	25.642139	100

Existing, Seismic

Report generated using GeoStudio 2007, version 7.23. Copyright © 1991-2013 GEO-SLOPE International Ltd.

File Information

Title: Brenes Property
Created By: Keven Hoffmann

Revision Number: 119

Last Edited By: Keven Hoffmann

Date: 3/17/2016 Time: 9:47:25 AM

File Name: 4316.00 A-A.gsz

Directory: Y:\Keven's Inbox\Project Folders\4316\

Last Solved Date: 3/17/2016 Last Solved Time: 9:47:29 AM

Project Settings

Length(L) Units: feet Time(t) Units: Seconds Force(F) Units: lbf Pressure(p) Units: psf Strength Units: psf

Unit Weight of Water: 62.4 pcf

View: 2D

Analysis Settings

Existing, Seismic

Kind: SLOPE/W

Method: Morgenstern-Price

Settings

Apply Phreatic Correction: No

Side Function

Interslice force function option: Half-Sine PWP Conditions Source: Piezometric Line

Use Staged Rapid Drawdown: No

Slip Surface

Direction of movement: Left to Right

Use Passive Mode: No

Slip Surface Option: Entry and Exit Critical slip surfaces saved: 1

Optimize Critical Slip Surface Location: No

Tension Crack

Tension Crack Option: (none)

FOS Distribution

FOS Calculation Option: Constant

Advanced

Number of Slices: 30

Optimization Tolerance: 0.01 Minimum Slip Surface Depth: 0.1 ft Optimization Maximum Iterations: 2000 Optimization Convergence Tolerance: 1e-007

Starting Optimization Points: 8 Ending Optimization Points: 16 Complete Passes per Insertion: 1

Driving Side Maximum Convex Angle: 5 ° Resisting Side Maximum Convex Angle: 1 °

Materials

Mass-wastage Deposits

Model: Mohr-Coulomb Unit Weight: 120 pcf Cohesion: 100 psf

Phi: 28 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Lawton Clay

Model: Mohr-Coulomb Unit Weight: 115 pcf Cohesion: 500 psf

Phi: 26 ° Phi-B: 0 °

Pore Water Pressure
Piezometric Line: 1

Slip Surface Entry and Exit

Left Projection: Range

Left-Zone Left Coordinate: (0, 218) ft

Left-Zone Right Coordinate: (16.4092, 216.47105) ft

Left-Zone Increment: 4 Right Projection: Range

Right-Zone Left Coordinate: (47.21507, 202.70305) ft

Right-Zone Right Coordinate: (120, 185) ft

Right-Zone Increment: 4
Radius Increments: 4

Slip Surface Limits

Left Coordinate: (0, 218) ft Right Coordinate: (120, 185) ft

Piezometric Lines

Piezometric Line 1

Coordinates

X (ft)	Y (ft)
1	

0	207
11	206
24	203
43	195
69	189
96	176
105	172
109	171.5
120	171

Seismic Loads

Horz Seismic Load: 0.2091 Ignore seismic load in strength: No

Regions

	Material	Points	Area (ft²)
Region 1	Lawton Clay	23,33,32,31,30,29,28,27,26,25,24	4167.25
Region 2	Mass- wastage Deposits	22,23,24,25,26,27,28,29,30,31,21,19,18,20,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1	1281.75

Points

	X (ft)	Y (ft)
Point 1	8	218
Point 2	19	216
Point 3	25.5	214
Point 4	29	212
Point 5	32	210
Point 6	35.5	208
Point 7	39	206
Point 8	43	204
Point 9	49.5	202
Point 10	55	200
Point 11	66.5	198
Point 12	72.5	196
Point 13	76.5	194
Point 14	81	192
Point 15	89	190
Point 16	99	188
Point 17	109	186
Point 18	114	184
Point 19	117	185
Point 20	112	185
Point 21	120	185
Point 22	0	218
Point 23	0	207
Point 24	11	206

Point 25	24	203
Point 26	43	195
Point 27	69	189
Point 28	96	176
Point 29	105	172
Point 30	109	171.5
Point 31	120	171
Point 32	120	155
Point 33	0	155

Critical Slip Surfaces

	Slip Surface	FOS	Center (ft)	Radius (ft)	Entry (ft)	Exit (ft)	
1	37	1.205	(75.933, 300.787)	109.583	(4.13677, 218)	(83.2149, 191.446)	

Slices of Slip Surface: 37

	Slip Surface	X (ft)	Y (ft)	PWP (psf)	Base Normal Stress (psf)	Frictional Strength (psf)	Cohesive Strength (psf)
1	37	6.068383	216.4008	-621.02377	90.747988	48.251561	100
2	37	9.5	213.6579	-469.33672	303.48109	161.36376	100
3	37	12.333335	211.56375	-366.37363	432.88153	230.16719	100
4	37	15	209.72115	-289.80042	542.1447	288.26345	100
5	37	17.666665	207.9918	-220.28912	642.79047	341.77776	100
6	37	20.25	206.41705	-159.22443	721.55516	383.65768	100
7	37	22.75	204.9856	-105.90014	780.6205	415.06328	100
8	37	24.75	203.8955	-75.58243	826.85599	439.64713	100
9	37	27.25	202.6313	-62.382818	842.44448	447.93568	100
10	37	30.5	201.07985	-50.962018	827.44651	439.96111	100
11	37	33.75	199.66635	-48.147219	807.68351	429.45294	100
12	37	37.25	198.27595	-53.34538	794.27304	422.32247	100
13	37	40	197.26845	-62.728353	785.33252	417.56871	100
14	37	42	196.59565	-73.295756	782.63912	416.1366	100
15	37	44.625	195.78545	-72.409731	803.17981	427.05828	100
16	37	47.875	194.8704	-62.115866	844.263	448.9026	100
17	37	50.875	194.1169	-58.296694	863.33482	459.04327	100
18	37	53.625	193.508	-59.900428	858.72115	456.59013	100
19	37	56.4375	192.9622	-66.339975	869.48426	462.31298	100
20	37	59.3125	192.48165	-77.754098	895.01787	475.88944	100
21	37	62.1875	192.07925	-94.047641	903.27697	480.28088	100
22	37	65.0625	191.7542	-115.16121	892.68718	474.65019	100
23	37	67.75	191.51725	-139.07852	841.04474	447.19142	100
24	37	70.75	191.34075	-198.64021	730.46697	388.39617	100
25	37	73.5	191.2357	-274.70728	593.9036	315.78415	100
26	37	75.5	191.2095	-333.16233	459.18133	244.15104	100
27	37	77.625	191.2229	-397.8415	318.44207	169.31865	100
28	37	79.875	191.2808	-469.07403	172.78589	91.871887	100
29	37	82.10746	191.3838	-542.5417	52.342923	27.831226	100